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Abstract. We have developed Monte Carlo wave function simulation schemes to study cold collisions
between magnesium atoms in a strong red-detuned laser field. In order to address the strong-field problem,
we extend the Monte Carlo wave function framework to include the partial wave structure of the three-
dimensional system. The average heating rate due to radiative collisions is calculated with two different
simulation schemes which are described in detail. We show that the results of the two methods agree and
give estimates for the radiative collision heating rate for 24Mg atoms in a magneto-optical trap based on
the 1S0–

1P1 atomic laser cooling transition.

PACS. 32.80.Lg Mechanical effects of light on atoms, molecules, and ions – 32.80.Pj Optical cooling
of atoms; trapping – 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps – 02.70.Uu
Applications of Monte Carlo methods

1 Introduction

Trapping and cooling of neutral atoms in magneto-optical
traps has become an important tool in atomic physics for
spectroscopic and fundamental studies since it was first in-
troduced in late 1980’s [1]. In such traps atoms are cooled
down to the milliKelvin region and below it (depending
on the particular element), and subsequent evaporative
cooling in magnetic traps has made it possible to reach
the quantum degeneracy limit, where bosonic atoms tend
to form Bose-Einstein condensates [2], and fermionic ones
demonstrate the exclusion principle by filling the Fermi
sea [3,4]. Despite the success in going colder and denser,
the behavior of the atomic cloud in basic magneto-optical
traps still remains only a partially understood problem.
One of the challenges is to understand if and how the
atom-atom interactions in the form of inelastic cold atomic
collisions affect the thermodynamics of the trapped and
cooled cloud of atoms. Studies of such collisions have,
however, also a more fundamental role, because cold col-
lisions in the presence of light challenge the traditional
approaches of collision and scattering theory [5,6].

In general laser cooled and trapped neutral atoms pro-
vide an excellent system to study the basic aspects of col-
lision theory. The slow relative motion of atoms guarantee
the validity of the Born-Oppenheimer approximation and
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one can consider the collision as a one-cycle vibration of
a quasimolecule formed by the colliding atoms (we prefer
the term “quasimolecule” to “molecule” because any bind-
ing of atoms to each other is only temporary). One can
separate the relative motion of two atoms into radial and
angular parts, and the number of involved partial waves
is limited to only a few lowest ones. Especially for the
main isotopes of the alkaline earth atoms, such as Mg, Sr
and Ca, the missing nuclear spin leads to a single, non-
degenerate atomic ground state, and the bosonic nature
of these atoms forces an even parity to the partial waves
(or, in the quasimolecule picture, to the ground state rota-
tional quantum numbers). Naturally, in the limit of very
low temperatures only the s-wave is allowed, and under
suitable conditions the atoms can form a Bose-Einstein
condensate [7].

The simple picture given above becomes distorted if
we add the presence of light. Firstly, on a single atom
level the absorption of a photon, although needed for laser
cooling, will eventually limit the temperatures that one
can achieve (the recoil limit) [8]. Thus ultracold tempera-
tures can be obtained either by evaporative cooling or by
using very sophisticated absorption-free techniques such
as velocity-selective coherent population trapping [9], or
Raman cooling [10]. Secondly, the laser can also excite the
quasimolecule formed by the colliding atoms [11–13]. The
result of this process depends very much on the frequency
and intensity of the laser light. In the basic laser cooling
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situation, however, the light field is usually near-resonant
and strong. Unfortunately, this is also the region where
theoretical treatment of the problem is most difficult, and
where the assigning of experimentally observable signals
to specific processes is hard.

The main bulk effects arising from collisions in the
standard laser cooling and trapping process in a magneto-
optical trap are assumed to be (a) the loss of atoms from
the trap, and (b) the heating of the atomic cloud. The first
process has been studied in detail both experimentally and
theoretically, but mostly at weak fields (in a typical ex-
periment the cooling lasers are shut off and replaced by
a highly controllable, weak probe laser); for reviews, see
references [5,6]. The second process has been almost com-
pletely ignored due to the difficulty of modelling it [14],
and to the difficulty of separating the collisional heating
from other heating effects such as reabsorption of scat-
tered photons [15].

In this paper we build a dynamical description of colli-
sional heating by a strong laser field in a three-dimensional
two-atom system. Our tool is wave packet dynamics [16],
i.e., time-dependent description of the collision process.
Spontaneous emission of photons in the semiclassical laser
field approximation makes the two-atom system an open
quantum system [17], and we use the Monte Carlo quan-
tum jump method as a tool [18]. We take the dominant
magnesium isotope 24Mg as our study case, because the
lack of hyperfine structure reduces the number of molec-
ular states and thus allows a quantitative study [19],
where the complexity arises only from the partial waves.
Also, laser cooling and trapping of magnesium has been
achieved experimentally [20,21].

Previously near-resonant collision studies have been
limited to two-state models, and at best the partial waves
have been treated independently (ignoring second-order
couplings) [19], but at strong fields this is not possible as
several waves are coupled to each other. We have recently
taken a step to the direction of including the partial wave
structure in a more realistic way to the description of cold
collisions in strong fields [22]. Of course, it is not possi-
ble to include all partial waves in a realistic study, so the
partial wave manifold must be truncated.

In building the framework for our wave packet calcu-
lations we have noticed that the artificial truncation of
the infinite sequence of partial waves must be done with
care, otherwise it may lead to significant errors. Another
problem in cold collisions is the setting of the initial state
for the atom-atom system, as the quasimolecule states
are strongly coupled even asymptotically. After outlining
the background for inelastic processes and the properties
of the magnesium system in Section 2, we discuss these
problems and our solutions to them. In Section 3 we dis-
cuss how to connect our simulations with a heating rate.
By performing the wave packet calculations in our frame-
work, we show that it is possible to assign a heating rate
to the system. We also study the intensity-dependence of
this rate. These results are reported in Section 4, where
we also show that the long-time behavior of the atom-
atom system, i.e., accumulation of relative kinetic energy
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Fig. 1. The quasimolecule view of the colliding magnesium
atoms in a laser field.

in several subsequent collisions, can be understood and
predicted reasonably well from the short-time one-collision
data. Finally, in Section 5, we discuss our results and their
consequences.

2 Framework

2.1 Inelastic processes

Let us consider the situation in Figure 1, where we show
schematically the basic molecular potentials of our model,
as a function of the atomic distance R. For best effi-
ciency the frequency of a cooling laser (ωL) is usually set a
few atomic electronic transition linewidths (Γat in energy
units) below the exact resonance (ω0), i.e., detuned to the
red side of the transition [detuning δ = �(ωL − ω0) < 0].
A single atom is thus slightly off-resonant with the laser
light. However, we can also view the situation in the quasi-
molecule picture. Then one of the molecular states can at
some specific atomic distance RC (Condon point) couple
resonantly to the molecular ground state. Usually there
are many such states, but for 24Mg (and also for the other
major isotopes of alkaline earth atoms) there are only two,
namely 1Σ+

u and 1Πg [19,23–25]. Since the excitation of
the 1Πg state is strongly forbidden at long distances, the
system reduces in practice to a simple system consisting of
two electronic states. Note that asymptotically the molec-
ular ground state (1Σ+

g here) corresponds to both atoms
being in the atomic ground state, and the excited molec-
ular state corresponds to one atom being in the atomic
ground state (here 1S0) and the other one in the atomic
excited state (here 1P1).

Eventually at very short atomic distances the poten-
tial for the excited molecular state becomes repulsive, and
thus below the dissociation limit we have a set of bound
vibrational states (dotted lines in Fig. 1). When the cool-
ing laser is just below the excited state dissociation limit,
the vibrational line broadening is usually too large for the
states to be resolved. By increasing the laser detuning,
the states become resolved and one can perform spectro-
scopic studies of these states. This leads to photoassocia-
tion spectroscopy [6], which is a very useful tool for deter-
mining the s-wave scattering lengths for atomic collisions,
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and for creating translationally cold molecules from cold
atoms.

If we describe the situation in the dynamical picture
based on only the electronic molecular states, the inability
to resolve the vibrational states means simply that if the
quasimolecule is excited at RC , it has a high probability
to decay back to the ground state via spontaneous emis-
sion of a photon, before reaching the small values of R.
If the quasimolecule survives to the region of small R, its
state may change into a one with lower energy (asymp-
totically), and the energy difference between these two
excited states goes into an increase of the relative kinetic
energy. This increase is large enough for the atoms to be
lost from the trap, and the mechanism is called the fine-
structure change (FS) for alkali metal atoms [11–13], and
state change (SC) for alkaline earth atoms [19].

Another possibility is that the quasimolecule decays
before reaching the small R region, but has acquired
enough relative kinetic energy for the atoms to exceed the
trap depth (usually on the order of 1 K). In magneto-
optical traps Doppler cooling works efficiently on hot
atoms, but if the trap depth is exceeded, even this cooling
can not recapture the hot atoms produced in collisions.
Both effects lead to a non-exponential decay in the num-
ber of trapped atoms and can be observed via monitoring
the number of atoms (collisions with background atoms
etc. lead to exponential decay). This is called radiative
escape (RE) [26].

Radiative heating, which is studied in this paper, fol-
lows the radiative escape mechanism, but occurs for atoms
that have not managed to exceed the trap depth in their
kinetic energy increase before decay. The loss mechanisms
are very visible and important, but compared to them the
radiative heating is really a bulk effect, especially at strong
fields. The resonant excitation at RC is very strong, but
the decay also concentrates to its vicinity. At strong fields
the population that decays near RC can also undergo re-
excitation [14], i.e., we can not separate the dynamics into
a sequence of separated excitation and decay processes, as
has been done in the weak field studies. The inclusion of
partial waves complicates the situation further, as we shall
discuss in Section 2.5.

2.2 Magnesium quasimolecule

We have selected as our study case the 1S0–1P1 laser cool-
ing transition of 24Mg. The methods and qualitative con-
clusions apply to other alkaline earth atoms, and to a
lesser degree also to other elements where, however, hyper-
fine structure will complicate the picture. For the system
of two 24Mg atoms, the ground electronic quasimolecule
state is 1Σ+

g and, as discussed above, for excited state we
choose the 1Σ+

u state, for which the P and R rotational
state transition branches are possible, see Figure 2. Since
for symmetry reasons only even partial waves exist for the
ground state, only the odd ones contribute in the excited
state due to the missing Q branch.

For small detunings the Condon point RC lies in the
long range where the ground state is approximately flat,
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Fig. 2. Partial wave l and rotational state J coupling scheme
for the ground 1Σ+

g and excited 1Σ+
u states.

and the excited 1Σ+
u potential is [19]

U(R) = − 3Γat

2 (krR)3
[cos (krR) + (krR) sin (krR)] , (1)

where kr is the wavenumber of the 1S0–1P1 transition, R
is the internuclear distance, and Γat is the corresponding
atomic linewidth (Γat/h = 78.8 MHz). For short range we
actually flatten the excited state potential when it begins
to correspond to kinetic increases that exceed the max-
imum values allowed by numerics (and survival to short
range is small in any case). The position-dependent molec-
ular linewidth including the relativistic retardation correc-
tions is [19]

Γ (R) = Γat

{
1 − 3

(krR)3
[(krR) cos (krR) − sin (krR)]

}
.

(2)
The wave number kr forms the basis of the recoil unit
system, which is used in the numerical computations. The
recoil energy is Er = �

2k2
r/2µ, where µ = mMg/2 is the

reduced mass of the two-atom system, and the recoil unit
of length is λ/2π = k−1

r , where λ is the transition wave-
length corresponding to �ω0. For the 1S0–1P1 transition
of 24Mg, ER = kB × 9.8 µK and λ = 285.21 nm [19].

Within the rotating wave approximation we can shift
the ground state up in energy by the photon energy
�ωL, giving the atomic states (and asymptotically for the
molecular states) an energy difference equal to the de-
tuning δ. Thus the Hamiltonian of the system, with the
matrix structure due to the partial waves made explicit,
reads

H =⎛
⎜⎜⎜⎜⎜⎝

. . .
...

...
... · · ·

· · · Ukin + Ue,l−1 Vl−1,l 0 · · ·
· · · Vl,l−1 Ukin + Ug,l + δ Vl,l+1 · · ·
· · · 0 Vl+1,l Ukin + Ue,l+1 · · ·
· · · ...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠ ,

(3)

where Ukin is the kinetic energy

Ukin = − �
2

2µ

∂2

∂R2
, (4)
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Table 1. Factors αjl for the couplings between the various
partial waves/rotational states. l denotes the ground state par-
tial wave angular momentum number and j the corresponding
excited rotational state. P denotes the branch where the par-
tial wave l couples to the excited rotational state with angular
momentum j = l − 1, and R denotes the branch coupling l to
j = l + 1.

branch αjl (l = 0) αjl (l �= 0)

P -
√

[l/3]/2l + 1

R
√

2/3
√

[(l + 1) /3]/2l + 1

and the potentials Ug and Ue include the atomic interac-
tion potential U(R) from equation (1) and the centrifugal
part:

Ug,l =
�

2l(l + 1)
2µR2

, Ue,j = U(R) +
�

2j(j + 1)
2µR2

. (5)

The couplings between the ground state partial waves (l)
and excited state rotational states (j) are defined as

Vjl = Ωαjl

√
Γ

Γat
, (6)

where the factors αjl are given in Table 1, and Ω is the
Rabi coupling in energy units. Following reference [19], we
can relate the Rabi coupling to laser intensity as

Ω

Γat
= 0.5304

√
I(W/cm2), (7)

where I is the laser intensity. The previous weak field
work [19] was performed at the intensity 1 mW/cm2,
whereas our work concentrates on values Ω/Γat � 1, in-
dicating the intensity region 1 W/cm2, i.e., about three
orders of magnitude stronger fields.

2.3 Monte Carlo simulations

The Hamiltonian (3) is not sufficient for describing col-
lisions in the presence of laser light, because it does not
take into account the spontaneous decay of the excited
state. At weak fields it is unlikely that the decayed pop-
ulation is re-excited, so one can add decay to the Hamil-
tonian (3) as an imaginary potential iΓ/2 for the excited
quasimolecule states, with the position-dependent Γ given
by equation (2). The resulting problem can be solved with
traditional time-independent scattering methods for trap
loss [14,19]. For radiative heating we need to estimate also
the kinetic energy change that took place before the decay,
and in strong fields we also need to allow for re-excitation.
This forces us to treat the problem as a time-dependent
one, with initial and final states, rather than with bound-
ary conditions for ingoing and outcoming single-energy
quantum waves. In this picture, the colliding atoms are
described by a wave packet of relative motion, initially
peaked around some mean value of relative velocity v.

When we refer to the initial velocity of the wave packet,
it actually means 〈v〉; the same applies to the kinetic en-
ergy Ek.

Since the wave packet system is now an open quan-
tum system, its description would require one to use a
density matrix instead of a wave function. That would
also double the spatial degrees of freedom [density matrix
ρ(R, R′; t) vs. wave function Ψ(R, t)], taking the problem
beyond current computational capacities [16]. However,
we can nevertheless use the wave function description. In
the Monte Carlo wave function scheme [18], the decay is
incorporated in a stochastic manner. We add the iΓ/2
term to the Hamiltonian (3). In addition, at each time
step of duration δt in the numerical propagation of the
wave packet with time-dependent Schrödinger equation,
the wave packet is allowed to collapse onto the ground
state with a probability

Pjump = δt
∑

i

∫
dR[Ψ i

e(R)]∗Ψ i
e(R)Γ (R)/�, (8)

where the sum goes over all excited quasimolecule states
(here all the rotational states j). The occurrence of the col-
lapse (a quantum jump) is determined by a random num-
ber. At the collapse Ψg(R, t) is deleted, Ψe(R, t) becomes
the new Ψg(R, t), and then the excited state component is
set to zero [27]. Whether a jump actually occurred or not,
the normalization of the wave function is restored at each
time step.

The system properties are calculated as ensemble av-
erages over several such random realizations. The benefit
of the strong fields regime is that the excited state occu-
pation is high, and jumps are frequent; this improves the
statistical accuracy and the relevant properties, including
the average kinetic energy as a function of time, can be
obtained with reasonably small ensemble sizes. Typically
our ensembles have 64 or 128 members, which is quite suf-
ficient for calculating the bulk properties such as average
kinetic energy [14,26]. In cold collision studies this method
has been applied previously to two-state models [14,26],
to collisions in optical lattices [28,29], and an initial step
towards including the partial waves to cold collision prob-
lems was presented in reference [22].

2.4 Semiclassical picture

The wave packet approach treats the molecular dynam-
ics quantum mechanically. The laser field is assumed to
be classical, though, so it appears as a dipole-mediated
coupling of the electronic states. Decay via spontaneous
emission is included with the quantum jump approach.
Thus the reabsorption of a spontaneously emitted photon
is ignored, but this does not really play a role in colli-
sion dynamics. Also, at the temperatures considered here,
we can also ignore the photon recoil for absorption and
emission events.

There is, however, an aspect of classical dynamics that
one can add to the system. Initially the wave packet is
rather well defined in position and momentum, so it is
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possible to define a classical collision trajectory for the
approaching atoms. In other words, the excitation can be
treated as a dynamical process where the quasimolecule
traverses a level crossing at RC along a classical trajec-
tory. If only two states are involved, and decay is ignored
for the brief moment of passing RC , one can apply the
Landau-Zener model [5,14]. This model predicts an exci-
tation probability

PLZ = 1 − exp
(
− 2πV 2

C

�vCU ′(RC)

)
, (9)

where vC is the relative momentum, VC is the coupling
between the molecular states, and U ′(RC) is the slope
of the potential difference, all calculated at the crossing
point RC .

Even with its limitations, this simple model enables
one to define the concept of a “strong field”. In the atomic
case, a field is strong if one is at the saturation limit of
the atomic transition. The on-resonance saturation inten-
sity is usually defined as [1] Is = πhc/(3λ3τ), where τ
is �/Γat. For the magnesium 1S0–1P1 transition one gets
Is = 0.444 W/cm2, which is of the same order as the inten-
sities used in our simulations. But one should note that the
quasimolecular excitation probability can be close to unity
even when the atomic excitation is far from being satu-
rated. The Landau-Zener expression indicates that slow
motion or gentle potential slope at RC can compensate in
situations where the ratio V/δ is otherwise small. There-
fore the concept “strong field” must always be conditional
to temperature, detuning and potential structure.

Without the partial waves, the magnesium situation
would be an excellent application case for the two-state
model. Now the question is, how well this approximation
translates to strong fields and partial waves.

2.5 Partial waves

An example of the potential structure near the Condon
point is shown in Figure 3a. The couplings between the
states form in fact a net of closely placed Condon points.
The spatial separation between the individual two-state
resonances suggests the possibility to partition the prob-
lem into separate two-state processes, which is exactly the
approach adopted in weak field studies [19]. In this picture
the approaching wave packet meets a sequence of two-state
level crossings. It is then tempting to apply the Landau-
Zener model to each crossing independently.

In our specific magnesium case the separation into a
sequence of two-state models would have a qualitatively
important aspect. Because the Q branch is missing, there
is a possibility for a “channelling effect”. Now each ground
state partial wave (with the exception of the s-wave) is
coupled to two excited rotational states, but at different
Condon points. Assume that the coupling Vjl is strong
enough that PLZ is almost unity for all crossings. Any part
of the wave packet that arrives on a ground-state partial
wave with l = l′ > 0 will thus move to the excited state
j = l′−1 at the first crossing. But in the next crossing, the
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Fig. 3. (a) Ground and excited state potentials for partial
waves/rotational states up to l = 20 and j = 21. Open circles
indicate the point of couplings forming a net of Condon points.
(b) The corresponding dressed potentials. The parameters are
δ = −3Γat and Ω = 1Γat.

excited rotational state is strongly coupled to the ground
state partial wave with l = j−1 = l′−2 (see Fig. 2). Thus
the wave packet returns quickly to the ground state, where
it climbs the centrifugal barrier, gets reflected, and follows
the same path l = l′ − 2 → j = l′ − 1 → l = l′ backwards.
This means that the collision is basically reduced to an
elastic one for all partial waves except the s-wave.

At this point we note that in our simulations no such
strong suppression was seen to occur. Basically, the two-
state approximation fails because even at moderate fields
the other states must be taken into account. This is best
seen if one considers the dressed states, i.e., potential
curves that correspond to the eigenstates of the coupled
quasimolecule+light system, see Figure 3b. In order for
the separation to independent two-state crossings to work
out, the dressed states should show avoided crossings near
each RC . But it turns out that, for this to happen, the cou-
pling strengths should be so low that PLZ is far from unity.
Therefore the division into separated, two-state Landau-
Zener crossings is not applicable to the problem at hand,



216 The European Physical Journal D

except for giving a rough tool to define the concept of
strong field.

Strong fields correspond to the adiabatic limit, which
means that the wave packet should follow the dressed
states smoothly, and position-dependent unitary transfor-
mations describe the change from the bare state basis to
the dressed state basis and back. The concept of adiabatic
following and the basis change symmetry is broken by the
spontaneous emission. It is still possible to treat the prob-
lem in the dressed state basis, but then the decay can go
both ways as now practically all dressed states are super-
positions of the ground and excited states. In the Monte
Carlo method this leads to a complicated description, and
therefore the bare states are usually preferred, even at
strong fields.

In the near-resonant situation the dressed and the
field-free (bare) quasimolecule states do not match asymp-
totically at R → ∞, which makes the setting of the initial
conditions difficult. If we set the wave packet initially on
one of the dressed states, which kinetic energy should we
give it, the initial ground state one, or should we take into
account the energy difference between the bare ground
state, and the selected dressed state? Spontaneous emis-
sion allows us to circumvent this problem.

Since the atoms approach slowly, the quasimolecule
reaches a steady state (in terms of the ground and ex-
cited state populations) before the wave packet reaches the
Condon point. The approximate time scale for steady state
formation is a few times �/Γat. It does not really matter
whether we set the system on the bare or dressed state ini-
tially as it quickly adjusts itself to the steady state. Thus
we can set the initial wave packet on a bare ground state
corresponding to some particular value of l. It should be
noted that in the Monte Carlo approach, the steady state
appears only in the ensemble average.

For practical reasons, we also need to truncate the
infinite sets of partial waves and rotational states into
finite ones, with some maximum values. Because of the
centrifugal potential, only low-lying partial waves should
contribute to a collision event. The maximum classically
allowed angular momentum is obtained by matching the
initial kinetic energy Ek to the centrifugal potential at the
Condon point RC (taken to be the s-wave Condon point,
for simplicity), resulting in the value

lmax,class �
√

2µEk

�
RC . (10)

Excitation can occur also for higher partial waves than
this classical value, because of the quantum nature of the
dynamics. The wave packet has a finite width, i.e., there
are velocity components for which E > Ek. Also, there ex-
ists a kind of tunnelling effect for atoms that nearly reach
RC , which is quickly suppressed as l increases. To be on
the safe side, we have chosen lmax to be a few partial waves
higher than the classical value; this has been found to be
a satisfactory description in previous work [26], where the
role of the partial wave structure was studied with wave
packets assuming only independent Q branch (l → j = l)
processes.

It is important to avoid unwanted artificial effects that
may arise because of the partial wave/rotational state
truncation. In particular, choosing an odd number of par-
tial waves may lead to the existence of a dark eigenstate
in the Hamiltonian (3). Such a state is an almost pure su-
perposition of ground-state levels and any population that
occupies it will survive, unaffected by decay, and is not ex-
cited at the Condon point. If the system has a dark state,
the frequent quantum jumps drive the quasimolecule pop-
ulation efficiently into it well before the actual collision
occurs.

Since a dark state can only exist if the Hamiltonian
consists of an odd number of coupled levels, any suppres-
sion of radiative heating because of a dark state will be a
pure artifact of the finite matrix and must be avoided. In-
deed, our numerical computations indicate that in the case
of few partial waves, the excited-state flux is much sup-
pressed if the number of states is odd, but the difference
between the odd and even cases is less pronounced when
the number of levels is larger. All the results reported here
are obtained using an even number of states.

3 Heating models

3.1 Single-collision model

In order to obtain information on the heating rate we cal-
culate the average kinetic energy increase due to radiative
heating in a single collision (see Appendix A.1 for further
details). In this model the initial wave packet is reasonably
well defined in position and momentum, so that we can as-
sign the initial relative velocity v with the mean velocity of
the packet, and the atoms are clearly separated. Next the
atoms collide and heat up due to the radiative heating pro-
cess, and move apart again. The single-collision simulation
is stopped when the collision region is emptied of popula-
tion and before the quasimolecule wave packet reaches the
edge of the simulation space. From an ensemble of such
simulations we obtain the average kinetic energy increase
per collision ∆Esc.

This approach is conditional to the point that the post-
collision behavior of the wave packet follows the above
classical picture; an important aspect of our simulations
is to show that this is indeed the case. Figure 4 shows
an example of the time evolution of the average kinetic
energy and we see a clear stepwise behavior of kinetic en-
ergy. Then ∆Esc can be calculated as the height of the
energy step. The rough following of a classical trajectory
is also demonstrated by the mean value of the wave packet
position R (solid line in Fig. 5). Finally we note that the
postcollisional distributions |Ψ(R, t)|2 in all simulations
clearly show that the collision region is emptied after the
collision event.

The inelastic process spreads the wave packet in mo-
mentum and thus in position, and eventually the fast parts
get reflected first at the edge of the simulation space (at
R = 4λ here), and 〈R〉 loses its classical-like behavior
(Fig. 5). Similarly, the wave packet is delocalized over the
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Fig. 4. An example of the time evolution of the average ki-
netic energy in a single collision simulation (an ensemble of
64 realizations). The parameters are: δ = −3.0Γat, Ω = 1.0Γat,
ki = 10.0kr , lmax = 10 and the initial component is li = 8.
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Fig. 5. An example of the time evolution of the mean position
of the wave packet, 〈R〉, in a simulation box of L = 4λ (solid
line), and L = 2λ (dashed line). The parameters are: δ =
−3.0Γat, Ω = 1.0Γat, ki = 10.0kr , lmax = 10 and the initial
component is li = 8.

whole simulation space, and remains like that. This is re-
flected in the long-time behavior of 〈R〉 (dashed line in
Fig. 5). Clearly the classical-like trajectory description ap-
plies only to the first collision. For subsequent collisions we
can not define any classical-like asymptotical initial and
final states.

Results from single-collision calculations are related to
the physical heating rate coefficient of a thermal cloud at
temperature T through the relation (cf. Appendix A.1)

KH(T ) =
kBT

hQT

∫
dEk

kBT
e−Ek/kBT

×
∑

l(even)

(2li + 1)∆Esc(Ek, li), (11)

where QT = (2πµkBT/h2)3/2 is the translational partition
function, and ∆Esc(Ek, li) is the numerical kinetic-energy
increase calculated for the initial kinetic energy Ek and
initial ground state partial wave li. In practice we calculate
the nonaveraged, energy-dependent rate coefficient

KH(Ek) =
Ek

hQEk

∑
l(even)

(2li + 1)∆Esc(Ek, li). (12)

The multi-level Monte Carlo computations are extremely
time consuming, and we must therefore be content to cal-
culate the nonaveraged rate coefficients KH(Ek) for only a
few instances of parameter values. We argue that KH(Ek)
still indicates the order of magnitude of the heating rate
for temperatures around T = Ek/kB.

For the weakly-coupled case that has been treated pre-
viously [19], the wave packet populates the ground-state
partial wave on which it was initially concentrated, li, and
in the collision region it populates also the neighboring
excited-state levels, but is not allowed to spread beyond
those. However, as the Rabi coupling Ω is increased, one
quickly enters the regime where the population is dis-
tributed among several ground-state partial waves before
the collision. The dependence on the initial state is there-
fore rather weak. For example, when Ω = 1.0Γat, the dif-
ference in kinetic-energy increase between the cases li = 0
and li = 8 is only 25% (see Tab. 2). These dependencies
are also affected by the choice of initial position, but the
dependence of the final partial-wave-summed rates on the
initial position appears to be weak.

3.2 Multicollision model

An alternative method to calculate the heating rate co-
efficient is a multicollision simulation. The essence of the
method is that the quasimolecule population is reflected
at the edge of the numerical space and thus performs re-
peated collisions. The beginning of the simulation resem-
bles the single-collision situation (see Fig. 5). But then
multiple collisions begin to occur and the population is
quite rapidly distributed over the whole simulation space.
In a sense, the wave packet components slosh back and
forth, spreading in momentum as they reach the Condon
point, and spatial coherence is quickly lost.

The quasimolecule gains kinetic energy when collisions
occur, the wave packet moves faster, and the collision rate
increases. We can now monitor the time evolution of the
average kinetic energy and calculate the heating rate di-
rectly from the curve. The important point here is that
the memory effects from initial conditions are lost and the
result of the simulation should be independent of them.
The quantum jump processes contribute strongly in mix-
ing the population distribution of various partial waves
between collisions. This brings the multicollision model
closer to the actual situation where atoms emerging from
a collision on some particular partial wave meet individu-
ally other atoms, forming a collision complex with partial
waves that have nothing to do with the partial waves of
the previous collision.
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Fig. 6. An example of the time evolution of average kinetic
energy in the multicollision simulation. The kinetic energy be-
haves linearly and the slope of the curve gives the heating rate.
Here δ = −3.0Γat, Ω = 1.0Γat, ki = 10.0kr , lmax = 10 and the
initial component is li = 0.

In the very beginning of a multicollision simulation we
have the single-collision stepwise behavior in the average
kinetic energy, but after the spatial coherence (i.e., local-
ization to the vicinity of a classical trajectory) is lost, we
find that the kinetic energy increases linearly, see Figure 6.
This allows one to obtain the heating rate as the slope of
the curve for the particular density corresponding to the
size of the simulation space, as described in Appendix A.2.
The increase in energy becomes non-linear later on. This is
because the energy increase implies a faster collision rate
and better survival, which compete with the weaker exci-
tation probability (as discussed in Sect. 2.4). But we have
found that at that point the atoms are already quite hot
and strongly affected by Doppler cooling in any case. In
order to obtain the heating rate in practice, we measure
the slope of the energy in a time interval [t1, t2], where
the initial time t1 is chosen so that the wave packet has
already had time to rid itself of any dependence of ini-
tial state, and the upper limit t2 is chosen well before the
curve becomes non-linear.

The numerical result from the multicollision computa-
tion is related to the actual heating rate coefficient simi-
larly to equation (12), cf. Appendix A.2:

KH(Ek) =
Ek

hQEk

∑
l(even)

(2li + 1)
dEmul

dt

2L

v
. (13)

Here, L is the length of the simulation grid, v is the ini-
tial velocity v =

√
2Ek/µ, and dEmul is the energy of

the wave packet in the multicollision model. Thus, the
quantity under the summation sign is the energy gain per
collision (the factor 2 multiplying L reflects that the wave
has to travel across the grid twice between two collisions).
Moreover, we have already noted that in the multicollision
model the results are more or less independent of the ini-
tial partial wave; thus, we directly perform the sum over

Table 2. The comparison of results from two-state and mul-
tistate single-collision models. Here Nl is the total number of
states in the simulation (either 2 or 12), li is the initial state,
ki the initial momentum, and ∆Esc(ER) the average increase
of kinetic energy. The energy increase is calculated as a time
average of the kinetic energy in the region where it is flat, sub-
tracted by the initial energy. The error refers to statistical error
of the kinetic energy at the end of the Monte Carlo simulation.

Nl Ω(Γat) δ(Γat) li ki(kr) ∆Esc(ER)

2 1.0 –3.0 0 –10 705 ± 106
2 1.0 –3.0 6 –10 337 ± 44
2 1.0 –3.0 8 –10 371 ± 40
2 1.0 –3.0 12 –10 187 ± 33
12 1.0 –3.0 0 –10 404 ± 51
12 1.0 –3.0 8 –10 307 ± 31
14 1.0 –3.0 12 –10 332 ± 33

even li and obtain

KH(Ek) =
1
2
(lmax+1)2

√
2�

22L

µEk

dEmul

dt
� √

22LR2
C

dEmul

dt
.

(14)
As an internal check, the two simulation methods should
be compared by matching the energy gain per collision:

∆Esc =
dEmul

dt

2L

v
. (15)

The left- and right-hand sides should be summed over par-
tial waves before they can be compared, but anticipating
the result that the single-collision simulations are almost
independent of the initial angular momentum, the depen-
dence can be neglected.

4 Numerical results for heating rate
coefficients

The parameters for the simulations are chosen to corre-
spond to realistic experiments on magnesium. The atomic
linewidth is Γat = 391ER, and the recoil energy ER =
kB × 9.8 µK. We have chosen to work with a detun-
ing δ between 1 and 3 times the atomic linewidth Γat,
and varied the Rabi coupling Ω between 0.1 and 2 times
Γat, corresponding to laser intensities of 36 mW/cm2 to
14.2 W/cm2. The initial momentum ki has been cho-
sen to be ki = 10kr in most instances, giving an energy
Ek = 100ER = kB × 0.98 mK. This is slightly below the
Doppler temperature TD = 1.9 mK. We present the re-
sults of each of the two simulation methods, and compare
them both to each other, and to the outcome of a simpler
two-state model.

4.1 Average kinetic energy increase

The results for the average kinetic energy increase in the
single-collision model are displayed in Table 2. At the top
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Fig. 7. Energy increase due to radiative heating in the single-
collision model as a function of initial partial wave. Crosses
indicate the two-state result and circles are the results from
using the full partial-wave structure (multistate model). The
data refers to Table 2.

of the table are the results from using only two partial
waves, the ground-state partial wave as indicated in the
column li and the neighboring higher excited-state level,
j = li + 1. Below the horizontal bar are the results from
the full calculation, incorporating the first 6 or 7 partial
waves (i.e., up to lmax = 10 or 12). The initial mean po-
sition is set to R0 = 5λ/2π. Some clear differences can
be seen. First, when starting on the s-wave, the energy
increase is larger in the two-state case than in the mul-
tistate case. The reason is rather trivial: in the two-state
case there is only one channel for excitation; the probabil-
ity for this transition is proportional to 2/3, as can be seen
in Table 1. On the other hand, in the multistate calcula-
tion, many partial waves are occupied as the wave packet
enters the crossing region, and the transitions to the ex-
cited state take place with a suppressed probability as can
also be seen in Table 1; when l increases towards infinity,
α2

jl approaches 1/6. Conversely, when li is high enough,
the multistate result for the energy increase is higher be-
cause the population now spreads to lower partial waves
before the collision. Figure 7 illustrates this. These results
demonstrate that in the multistate case the redistribution
of population before the collision leads to a weak depen-
dence on the initial partial wave, as already discussed in
Section 3.1.

The intensity dependence of the multistate single-colli-
sion results is demonstrated in Table 3, and we discuss it
later, in Section 4.3.

4.2 Multicollision heating rate

For the multicollision simulations, the size of the simula-
tion box is set to L = 2.0λ. Again, a two-state calculation
has been done in order to compare with the full partial-
wave structure up to lmax = 10. The results for the heating
rate are displayed in Table 4.

Table 3. Intensity dependence of the results from the mul-
tistate single-collision simulations. The parameters are as in
Table 2.

Nl Ω(Γat) δ(Γat) li ki(kr) ∆Esc(ER)

12 1.0 –3.0 8 –10 307 ± 31
12 0.5 –3.0 8 –10 145 ± 16
12 0.1 –3.0 8 –10 16 ± 3

Table 4. Comparison of the two-state and multistate results
in the multicollision model. Here li is the initial state, ki the ini-
tial momentum, and dEmul/dt the slope of the energy-versus-
time curve.

Nl Ω(Γat) δ(Γat) li ki(kr) dEmul/dt(ERΓat/h)

2 1.0 –3.0 0 –10 4.48
2 0.5 –3.0 0 –10 2.23
2 0.4 –3.0 0 –10 1.00
2 0.3 –3.0 0 –10 0.50
2 0.2 –3.0 0 –10 0.22
2 0.1 –3.0 0 –10 0.069
12 2.0 –3.0 0 –10 1.20
12 1.0 –3.0 0 –10 0.79
12 1.0 –3.0 6 –10 0.67
12 0.5 –3.0 0 –10 0.40
12 0.1 –3.0 0 –10 0.039

Comparing the two- and twelve state results, there is
a similar difference, as already seen in the single-collision
results. Moreover, and like discussed earlier, the single col-
lision results indicated only the weak dependence of the
initial state. We expect this to hold also especially here for
the multicollision model. Assuming that the initial state
dependence is weak to effect the first collision, the role of
the initial state should be even weaker for the following
collisions which actually determine the slope of the heat-
ing curve,i.e. the heating rate. This view is confirmed by
the simulation result with li = 6 in Table 4. Thus the re-
sults concentrate here on the intensity dependence of the
heating rate which is discussed in the following subsection.

4.3 Comparison of results

The outcome of the single-collision and multicollision
models are now to be mapped to physical quantities using
equations (12) and (14). Equation (12) is rewritten as

KH(Ek) =

(
�

2
√

2πE
1/2
R

µ3/2

)
1
2
(lmax + 1)2

∆Esc(R.u.)
ki(R.u.)

,

(16)

where (R.u.) means recoil units. The fraction within
brackets has the numerical value 1.1307 × 10−43 Wm3.
The heating rates from the multicollision computations
are converted into energy increase per collision with the
conversion factor 2L/v = 491 in recoil units. The results
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Table 5. Physical heating rates in units of 10−40 Wm3 given
by the two numerical methods. Rs stands for single colli-
sion and Rmul for multicollision heating rates. All the results
are computed in the twelve-state model allowing for the full
partial-wave structure.

Ω(Γat) δ(Γat) Ek/kB (mK) Rs Rmul

2.0 –3.0 0.98 3.74 4.03
1.0 –3.0 0.98 2.10 2.65
0.5 –3.0 0.98 0.99 1.34
0.1 –3.0 0.98 0.11 0.13
1.0 –3.0 3.92 1.21 -
0.5 –1.0 0.98 - 0.23

are summarized in Table 5. The Monte Carlo computa-
tions are extremely time consuming, but because of the
weak dependence on initial partial wave and the large er-
ror bars, it has not been necessary to perform the calcula-
tion for each li, but the values tabulated in Tables 2 and 4
have been sufficient. The correspondence between the two
models is seen to be fair.

If we assume ki = 10kr, δ = −3.0Γat, VC = 2Ω/3, take
the leading R−3-term of the potential U(R) and ignore the
partial waves (l = j = 0), the argument in the exponential
in the Landau-Zener term in equation (9) becomes equal
to 7.2× (Ω/Γat)2. For VC = Ω/6, the asymptotic limit for
the αjl for large l, this decreases to 1.8 × (Ω/Γat)2. This
means roughly that in simulations with Ω = Γat we are
more or less saturating the Landau-Zener two-state result
for all partial waves. Although the model is not directly
applicable to the multistate case, this result indicates nev-
ertheless, that we should be in a region where the usual
weak-field expectation of linear increase of the excitation
rate with intensity I fails. Figure 8 plots the heating rate
as a function of the Rabi coupling for δ = −3Γat and
ki = −10kr. We see an increase which is at first roughly
linear in Ω, but then becomes even weaker, indicating a
possible saturation. This is in qualitative agreement with
two-state models [14]; when the Landau-Zener process sat-
urates, the re-excitation of decayed population leads to an
increase in excited state survival, which is linear in Ω [30].

5 Discussion and conclusions

We have explored in detail the regime of strong laser fields
in cold alkaline-earth collisions, which necessitates taking
the full partial-wave structure into account. For Rabi cou-
plings Ω of the order of or larger than the linewidth Γat,
the wave function of the colliding atoms quickly spreads
and populates all partial waves before and during the col-
lision, yielding results that depend only weakly on initial
conditions.

The outcome of the two computational models, the
ordinary simulation of a single collision and the multicol-
lision model where the wave sloshes back and forth in a
finite space, are seen to match well. A priori one tends to
associate the multicollision model as a more rigorous way
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Fig. 8. Numerically calculated energy-dependent heating rate
R as a function of Rabi coupling Ω for the energy Ek = kB ×
0.98 mK and the detuning δ = −3Γat. Crosses are the results
of the single-collision simulations and circles are the results of
the multicollision model.

to calculate the heating rate. This is because consecutive
collisions, during the system’s long term time evolution,
keep track on the changes of the system properties in a
more realistic way compared to the single collision model.
However, since the results produced by the two methods
have reasonable agreement, we come to the conclusion
that the computationally lighter single collision method
provides a more practical approach.

It is worth noting that recent experiments on alkaline-
earth atoms in magneto-optical traps show that the
Doppler limit is not reached [31–33]. Our earlier results in-
dicate that the radiative heating does not prevent reaching
of the Doppler limit for current rather low atomic densi-
ties in MOTs [22]. The improved method for cold colli-
sions, multicollision model presented here, gives further
confirmation for this view. The authors of reference [33]
attribute the extra heat to the transverse spatial inten-
sity fluctuations of their one dimensional optical molasses.
However, a full three dimensional set-up may introduce
additional factors to the problem. From the point of view
of atomic collisions, the partial wave treatment includes
three dimensional aspects, and the conclusions of this pa-
per remain the same.

In conclusion, we have developed methods, based on
Monte Carlo wave function simulations, to include par-
tial waves to the cold collision problems in strong laser
fields. The methods have been described in detail high-
lighting the most relevant aspects of the problem. For ex-
ample, the appropriate number of partial waves has to be
even to avoid the artificial dark state to influence the dy-
namics. The results show the linear increase of the heat-
ing rate with laser intensity, even in the regime where
the Landau-Zener excitation probability saturates. This is
in qualitative agreement with two-state models when the
re-excitation of decayed population has been accounted
for. We think that the work presented here presents a
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considerable step towards a complete partial wave treat-
ment of cold collisions in the presence of near-resonant
light. This topic is also relevant in the general framework
of fundamental collision theory. A completely satisfactory
and realistic model remains as a challenging task for future
studies.
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ments, and M. Machholm and P. Julienne for discussions. The
Finnish IT Centre for Science (CSC) is gratefully acknowledged
for providing the supercomputer environment used in the sim-
ulations. The work was supported by the Academy of Fin-
land (projects 207614, 108699, 105740, 206108), the Magnus
Ehrnrooth Foundation, the EU network CAUAC (Contract
No. HPRN-CT-2000-00165) and the EU Transfer of Knowl-
edge project CAMEL (Grant No. MTKD-CT-2004-014427).

Appendix A: Rate coefficients

A.1 Single collision rate

The collisional heating rate κH(n) describes the kinetic
energy change per unit volume and unit time. For iden-
tical particles it will be equal to KHn2/2, where KH is
the rate coefficient for heating, and n is the atomic den-
sity. The factor of 1/2 removes the doubling in collision
counting for identical particles. The total collisional heat-
ing rate is obtained by integrating κH over trap volume.
For simplicity we ignore the trap loss, so n is constant in
time. In any case, since the rate coefficient KH is density-
independent, any time dependence in n will not affect it.

For trap loss rate coefficient Kloss one normally cal-
culates the collision frequency times the probability for
loss, i.e., vσloss, where v is the relative velocity, and σloss

is the cross-section for collisions, including the probability
for a loss event to occur. This simple classical picture is
connected to thermodynamics by assuming a distribution
of velocities, f(v)dv, over which we take an average, and
obtain Kloss = 〈vσloss〉. The dynamics of the two-body col-
lision on the microscopic level then enters in calculating
σloss.

To calculate the heating rate KH is slightly more com-
plicated, because in addition to the probability of an in-
elastic collision event to happen, we also need to estimate
the amount of kinetic energy increase associated with it.
Technically, we would have a continuous distribution of
final energies corresponding to each value of v, due to the
randomness of the spontaneous emission events. For prac-
tical reasons we consider an averaged rate, i.e., to calculate
the average change in kinetic energy per unit time. Since
we can perform the averaging over final energy states be-
fore the averaging over initial states, we define a heating
cross-section σH(v) (units energy × distance2), that gives
the difference of the average final relative kinetic energy
and initial relative kinetic energy.

In the partial wave approximation we can write the
quantum mechanical cross-section for identical atoms in a

three-dimensional trap as [12]

σ(v) =
π

k2

∞∑
0

(2l + 1)Pl(v), (17)

where k is the wave number related to v and Pl(v) is the
event probability. Thus, as a generalization, we write for
heating

σH(v) =
π

k2

∞∑
0

(2l + 1)∆Esc(v, l), (18)

where ∆Esc(v, l) is the average single-collision energy in-
crease related to the “initial” partial wave l.

In an isotropic Maxwell-Boltzmann gas the distribu-
tion of relative velocities v is given by

f(v)dv = 4π

(
µ

2πkBT

)3/2

v2e−µv2/(2kBT )dv, (19)

where kB is the Boltzmann coefficient, µ is the reduced
two-particle mass (equal to mat/2 for identical atoms),
and T is the gas temperature at equilibrium. By defining
a dimensionless energy ratio ε = 1

2µv2/(kBT ) we get

KH(T ) =
kBT

hQT

∫ ∞

0

dεe−ε
∞∑
0

(2l + 1)∆Esc(ε, l). (20)

If we truncate the partial wave sum e.g. with the clas-
sical trajectory argument, then the upper limit for the
partial wave sum becomes energy dependent. Therefore it
is preferable to keep the sum inside the energy integral.

Due to the complexity of the Monte Carlo simulations
we are, in practice, limited to calculating ∆Esc(v, l) for a
rather narrow range of initial relative velocities v. As in
reference [19], we define a single-energy rate as

KH(ε) =
kBTε

hQTε

∞∑
0

(2l + 1)∆Esc(ε, l). (21)

As one can see immediately, this mimics the case where
ε = 1, and the energy dependence on the integrand comes
only from the Boltzmann factor.

A.2 Multicollision rate

The classical picture in the derivation of a rate coefficient
is a particle with velocity v, travelling a distance v∆t in
time interval of length ∆t, and having the “area” given by
the cross section σ. With gas density n, it meets v∆tσn
particles in that time, so that the collision frequency for
one particle becomes vσn. The density of such particles
brings in another n.

In the multicollision model the fixed simulation box
size L gives an alternative way to approach the problem.
Now the effective collisional volume is 2Lσ, in which the
multiple collisions eventually become inseparable, and the
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kinetic energy does not increase in a stepwise manner.
Here the quantum jumps and steady state formation make
sure that apart from the change in the kinetic energy, there
is no memory effects between collisions. Therefore, on av-
erage the situation corresponds to multiple inelastic colli-
sions when we have a particle density 1/(2Lσ), although
in reality the particles do not collide at regular intervals.
If we normalise the rate of change to density, we get

KH(ε) =
kBTε

hQTε

∞∑
0

(2l + 1)
dE

dt

2L

v
. (22)

There is one caveat, though. If the change in kinetic en-
ergy is a strong function of v, then clearly for suitably
long times dE/dt is not a constant, and one would need
to revert to calculating heating rates from single-collision
results. The fact that in simulations dE/dt remains a con-
stant for a wide energy region makes it possible to use re-
sults from multicollision studies in the manner described
above. More importantly, it implies that as one approaches
the Doppler cooling temperature, the heating rate per par-
tial wave remains constant.
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